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Abstract

Grapheme-to-phoneme (G2P) conversion is an important

task in automatic speech recognition and text-to-speech sys-

tems. Recently, G2P conversion is viewed as a sequence to

sequence task and modeled by RNN or CNN based encoder-

decoder framework. However, previous works do not consider

the practical issues when deploying G2P model in the produc-

tion system, such as how to leverage additional unlabeled data

to boost the accuracy, as well as reduce model size for online

deployment. In this work, we propose token-level ensemble

distillation for G2P conversion, which can (1) boost the ac-

curacy by distilling the knowledge from additional unlabeled

data, and (2) reduce the model size but maintain the high ac-

curacy, both of which are very practical and helpful in the on-

line production system. We use token-level knowledge distil-

lation, which results in better accuracy than the sequence-level

counterpart. What is more, we adopt the Transformer instead

of RNN or CNN based models to further boost the accuracy of

G2P conversion. Experiments on the publicly available CMU-

Dict dataset and an internal English dataset demonstrate the ef-

fectiveness of our proposed method. Particularly, our method

achieves 19.88% WER on CMUDict dataset, outperforming the

previous works by more than 4.22% WER, and setting the new

state-of-the-art results.

Index Terms: grapheme-to-phoneme conversion, knowledge

distillation, transformer

1. Introduction

Grapheme-to-phoneme (G2P) conversion aims to generate a se-

quence of pronunciation symbols (phonemes) given a sequence

of letters (graphemes), which is an important component in au-

tomatic speech recognition and text-to-speech systems [1, 2] to

provide accurate pronunciations for the words not covered by

the lexicon. G2P conversion can be viewed as a sequence to

sequence task and modeled by the encoder-decoder framework.

[3] adopt LSTM for G2P conversion and achieve improvements

than the previous joint n-gram model [4]. [5] use convolutional

sequence to sequence model and non-sequential decoding, and

attain the previous best results on the public CMUDict dataset.

While previous works introduced the neural sequence to se-

quence models into G2P conversion and indeed achieved im-

provements over conventional methods, they did not take into

account several practical issues of G2P conversion in the pro-

duction system. First, considering training data is always costly

through human labeling, how to further leverage the unlimited

amount of unlabeled data is critical to improve the performance
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of G2P conversion. Second, large or ensemble models are too

costly to serve when deploying in the online systems. How to

reduce the model size but maintain high accuracy is essential.

Inspired by the knowledge distillation in computer vi-

sion [6, 7] and natural language processing [8, 9, 10], in this

work, we propose the token-level ensemble distillation for G2P

conversion, to address the practical problems mentioned above.

First, we use knowledge distillation to leverage the large amount

of unlabeled words. Specifically, we train a teacher model to

generate the phoneme sequence as well as its probability distri-

bution given unlabeled grapheme sequence, and regard the unla-

beled grapheme sequence and the generated phoneme sequence

as pseudo labeled data, and add them into the original training

data. Second, we train a variety of models (CNN, RNN and

Transformer) for ensemble to get higher accuracy, and transfer

the knowledge of the ensemble models to a light-weight model

that is suitable for online deployment, again by knowledge dis-

tillation. Besides, we adopt Transformer [11] instead of RNN

or CNN as the basic encoder-decoder model structure, since it

demonstrates advantages in a variety of sequence to sequence

tasks, such as neural machine translation [11], text summariza-

tion [12], automatic speech recognition [13].

We conduct experiments on CMUDict 0.7b and our internal

dataset, and also leverage additional unlabeled words crawled

from the web. Our proposed method significantly boosts the

accuracy of G2P conversion by 4.22% WER compared with

the previous works. Specifically, Transformer model achieves

higher accuracy than RNN and CNN based models, and token-

level distillation outperforms sequence-level distillation.

Our contributions are listed as follows: (1) We propose

token-level ensemble distillation for grapheme-to-phoneme

conversion. (2) We are the first to use unlabeled words to boost

the accuracy of grapheme-to-phoneme conversion, and also the

first to introduce Transformer into this task and achieve better

performance. (3) Our method achieves the state-of-the-art ac-

curacy on CMUdict dataset, outperforming the previous best

result by 4.22% WER.

2. Background

In this section, we briefly review the background of grapheme-

to-phoneme conversion, Transformer model, as well as knowl-

edge distillation.

2.1. Grapheme-to-Phoneme conversion

The G2P conversion is the process that generating the phoneme

sequence (pronunciation) according to the grapheme sequence

(word). G2P conversion is necessary and important as lexicon

cannot cover all words, due to many words are long-tailed and

a lot of new words and compound words appear. The spelling
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and pronunciation are not exactly corresponding for some lan-

guages, e.g. English. What is more, the alignments between

graphemes and phonemes are complex. A grapheme may cor-

respond to no phoneme, a single phoneme or many phonemes,

as shown in Table 1, which makes G2P a hard task.

Table 1: An example of the alignments between graphemes and

phonemes.

graphemes B U B B L E

phonemes B AH null B AH:L null

Joint sequence n-gram models have been widely used [4,

14, 15] for G2P conversion. Recently, sequence to sequence

models have achieved great success in machine translation

task [16, 17, 18, 19], and are soon applied on G2P conversion.

[3] demonstrated that sequence to sequence models outperform

joint sequence n-gram models. [20, 21] combined joint n-gram

models with Bi-LSTM models and achieved good performance

in G2P conversion. [5] adopted convolutional sequence to se-

quence model and proposed the non-sequential decoding [22]

for G2P conversion, which achieved the previous state-of-the-

art result on the public CMUDict 0.7b dataset.

While these sequence to sequence models achieve good per-

formance on G2P conversion, there is still a gap when deploying

online. In this work, we propose token-level ensemble distilla-

tion based on Transformer model, which can not only boost the

accuracy of the G2P conversion with unlabeled words, but also

reduce the model size for online deployment.

2.2. Transformer

Transformer [11] has achieved the state-of-the-art performance

in many NLP tasks [23, 24, 25, 26]. The encoder and decoder in

Transformer has N identical layers, and each layer in encoder

consists of two different sub-layers: multi-head self-attention

and feed-forward network, while the decoder has an additional

multi-head attention sub-layer. Multi-head attention is to per-

form the attention function h times in parallel, allowing the

model to jointly attend to information from different representa-

tion subspaces at different positions. Residual connection is em-

ployed between each sub-layer. Transformer can better model

the interactions between any two tokens in the sequence and the

computation of each token in the encoder and decoder can be

parallel during training, which shows advantages over the RNN

based models. To the best of our knowledge, this is the first

work to apply Transformer in G2P conversion.

2.3. Knowledge Distillation

Knowledge distillation was first introduced by [27] for model

compression, where a light student model can approximate the

accuracy of a heavy and cumbersome teacher model. [6] first

applied knowledge distillation on neural networks, and then a

lot of works expand the usage of knowledge distillation to a

variety of tasks, such as image classification [7, 28, 29] and

natural language processing [8, 9, 10]. In this work, we leverage

knowledge distillation to distill the knowledge from additional

unlabeled word, as well as from the ensemble models, both of

which are beneficial for the online production system.

3. Token-Level Ensemble Distillation

In this section, we propose the token-level ensemble knowledge

distillation to boost the accuracy of G2P conversion, as well as

reduce the model size for online deployment.

3.1. Token-Level Knowledge Distillation

Denote D = {(x, y) ∈ X × Y} as the training corpus which

consists of the paired grapheme and phoneme sequence. A G2P

model based on sequence to sequence learning aims to mini-

mize the negative log-likelihood loss on corpus D:

LNLL(θ) = −
∑

(x,y)∈D

logP (y|x; θ), (1)

where the likelihood P (y | x; θ) can be factored by the chain-

rule and formulated as the cross-entropy between the one-hot

label and per-token probability:

logP (y|x; θ) =

Ty∑

t=1

|V|∑

k=1

1{yt = k} logP (yt = k|y<t, x; θ),

(2)

where Ty is the length of the target sequence, |V| is the vo-

cabulary size of the phonemes, yt is the t-th target token in the

phoneme sequence, and 1{·} is the indicator function indicating

the id of the phoneme in vocabulary.

In token-level knowledge distillation, the one-hot label be-

comes the probability distribution output of the teacher model:

LKD(θ) = −
∑

(x,y)∈D

Ty∑

t=1

|V|∑

k=1

Q(yt = k|y<t, x; θT )

× logP (yt = k|y<t, x; θ),

(3)

where Q(yt = k|y<t, x; θT ) is the probability distribution out-

put of the teacher model θT .

3.2. Ensemble Distillation with Diverse Models

Model ensemble can incorporate the advantages of individual

models, and reduce the effect of overfitting in a spirit of the bag-

ging method [30]. However, the online production system can-

not support large ensemble models for G2P conversion. Knowl-

edge distillation is an effective way to distill the knowledge

from strong ensemble models into single model. The ensem-

ble distillation can be formulated as follows:

LKD(θ) = −
∑

(x,y)∈D

Ty∑

t=1

|V|∑

k=1

Q̄(yt = k|y<t, x)

× logP (yt = k|y<t, x; θ),

(4)

Q̄(yt = k|y<t, x) =

∑M

m=1 Q(yt = k|y<t, x; θ
m
T )

M
, (5)

where Q̄ is the probability distribution combined by M mod-

els (θ1T to θmT ), which is simply the average of the probability

distribution of M models at each step of the target sequence.

The performance of the individual models and the diversity

between them are essential for ensemble. On the one hand, we

train deeper models to achieve higher accuracy. On the other

hand, we choose Transformer [11], Bi-LSTM [18], and convo-

lutional sequence to sequence [31] models to increase the diver-

sity of ensemble models.



3.3. Knowledge Distillation with Unlabeled Source Words

In G2P conversion, it is easy to obtain abundant unlabeled

source words (graphemes) from lexicon corpus of news or

wikipedia. Knowledge distillation gives a way of using unla-

beled source data. The teacher model can generate the target

phoneme sequence given the unlabeled source grapheme se-

quence, and the generated phoneme sequence can be used as

the label for student model. What is more, more unlabeled data

can help distill the knowledge of the teacher model to the stu-

dent model. In this work, we also use token-level knowledge

distillation for unlabeled source words. Denote D′ = {x ∈ X}
as the corpus of unlabeled source words. The knowledge distil-

lation loss with unlabeled source words is as follows:

L′
KD(θ) = −

∑

x∈D′

T
y′∑

t=1

|V|∑

k=1

Q̄(y′
t = k|y′

<t, x)

× logP (y′
t = k|y′

<t, x; θ),

(6)

y
′ ∼ Q̄(y|x) (7)

where y′ is generated by the ensemble model (Equation 7),

Q(y′
t = k|y′

<t, x) is the probability distribution output of the

ensemble model and is calculated by Equation 5.

The total loss of our method is the weighted combination

of the original negative log-likelihood loss and the knowledge

distillation loss [8, 10] on the labeled data, as well as the knowl-

edge distillation loss on the unlabeled data:

LTOTAL(θ) = (1−λ)LNLL(θ)+λLKD(θ)+L′
KD(θ), (8)

where each loss term is formulated in Equation 1, 4 and 6, λ is

the weight to trade off between the two loss terms on labeled

data.

4. Experiments and Results

In this section, we conduct experiments to verify the effective-

ness of the proposed method. We first introduce the datasets

used, and then describe the implementation details. At last, we

report the results of our method and conduct some comparisons

and analyses.

4.1. Experimental Setup

4.1.1. Datasets

We use two datasets to evaluate our proposed method: the first

one is the publicly available CMUDict 0.7b and the other one

is our internal dataset. For the public CMUDict 0.7b dataset,

we use the same training/validation/test split (108952 train-

ing words, 5447 validation words and 12855 test words) as in

[21], which is released in the CNTK toolkit1. The sizes of the

grapheme and phoneme vocabulary are 27 and 39 respectively.

To be consistent with the previous works [4, 5, 21], stress mark-

ings are removed and the multiple pronunciations are retained.

Our internal dataset contains 184243 training words, 10837 val-

idation words, 21678 test words, which includes uppercase and

lowercase letters and stress markings. We keep the stress mark-

ings in training and ignore the stress during test. The sizes of

the grapheme and phoneme vocabulary in our internal dataset

are 54 and 73 respectively. We train our models on the training

1https://github.com/Microsoft/CNTK/tree/master/Examples/Sequen
ceToSequence/CMUDict/Data

set and select the best hyperparameters according to the valida-

tion set.

We crawl nearly 2,000,000 unlabeled source words from

the lexicon corpus of Google news2. As the crawled data con-

tains words of other languages, unknown tokens and spelling

errors, we first filter the data by removing the words with un-

known tokens and then choose the top 300,000 unlabeled words

according to their similarity to the training data3.

4.1.2. Model Configurations

Ensemble Model We train the sequence to sequence based G2P

models with different model structures for ensemble, including

Transformer [11], Bi-LSTM [18] and CNN based sequence to

sequence model [31]. We use 4 Transformer models, 3 CNN

models and 3 Bi-LSTM models with different hyperparameters

for ensemble, which give the best performance on the valida-

tion set. The 4 Transformer models share the same hidden size

(256) but vary in the number of the encoder-decoder layers (6-

6, 6-4, 8-6, 8-4). For the 3 CNN models, they share the same

hidden size (256) but vary in the number of encoder-decoder

layers (10-10, 10-10, 8-8) and convolutional kernel widths (3,

2, 2) respectively. For the 3 Bi-LSTM models, they share the

same number of encoder-decoder layers (1-1), but with differ-

ent hidden sizes (256, 384 and 512).

Student Model We choose Transformer as the student

model and use the default configurations (256 hidden size and

6-6 layers of encoder-decoder) unless otherwise stated. We also

vary the number of layers for the encoder and decoder to ana-

lyze and compare the accuracy and memory/time cost, which is

essential for online deployment.

4.1.3. Training and Evaluation

We implement experiments with the fairseq-py4 library in Py-

Torch. We use Adam optimizer for all models and follow

the learning rate schedule in [11]. The dropout is 0.3 for Bi-

LSTM and CNN models, while the residual dropout, attention

dropout and ReLU dropout for Transformer models is 0.2, 0.4,

0.4 respectively. We set the λ in Equation 8 to 0.9 accord-

ing to the validation performance. We train each model on 8

NVIDIA M40 GPUs. Each GPU contains roughly 4000 tokens

in one mini-batch. We use beam search during inference and

set beam size to 10. We use WER (word error rate) and PER

(phoneme error rate) to measure the accuracy of G2P conver-

sion. Edit distance is used in PER calculation. In WER cal-

culation, considering the multiple pronunciations, word error is

counted only when the output differs from all the references,

following [4, 5, 21, 32].

4.2. Results and Analyses

4.2.1. Achieving State-Of-The-Art Accuracy

We first compare our method with previous works [4, 5, 21] on

CMUDict 0.7b dataset, as shown in Table 2. Sequitur G2P [4]

is a well established G2P conversion tool using joint sequence

modelling and is widely used as a baseline for comparison. [21]

used the ensemble of Bi-LSTM and joint n-gram model. The

convolutional sequence to sequence model with non-sequential

2https://github.com/mmihaltz/word2vec-GoogleNews-vectors
3We use the distance between the 1/2/3-gram distribution of training

words and unlabeled words, where the 1/2/3-gram means 1/2/3 consec-
utive characters.

4https://github.com/pytorch/fairseq



greedy decoding (NSGD) [5] is the previous state-of-the-art

on CMUDict 0.7b dataset5. It can be seen that our method

on 6-layer encoder and 6-layer decoder Transformer achieves

the new state-of-the-art result of 19.88% WER, outperforming

NSGD by 4.22% WER.

Table 2: Comparison between our method and the previous

works on CMUDict 0.7b dataset.

Method PER WER

Sequitur G2P [4] 6.12% 25.71%

Bi-LSTM + n-gram [21] 5.76% 24.88%

CNN with NSGD [5] 5.58% 24.10%

Our method 4.60% 19.88%

4.2.2. Reducing Model Size by 6x

Our method can also greatly reduce the model size for online

deployment. We compare the WER, the number of parameters,

and the inference speed between the baseline and our method,

as shown in Table 3. The baseline method just uses transformer

model (6-6 layers of encoder-decoder) without leveraging the

ensemble knowledge distillation and unlabeled source words.

To compare the inference speed, we use the time consumed by

generating the outputs of the test set (12855 words) on a sin-

gle M40 GPU with 12000 max tokens in one mini-batch. It

can be seen from Table 3 that our method can still reach high

accuracy with 1-1 layer of encoder-decoder, which can signifi-

cantly reduce the model size by nearly 6 times and the time cost

by nearly 4 times compared with the baseline model, but still

achieving higher accuracy in terms of WER. The reduction in

model size and inference time cost demonstrate the effective-

ness of our method for online deployment.

Table 3: Comparison of WER, number of parameters and infer-

ence time between the baseline and our method.

Method Layers WER Parameters Time

Baseline 6-6 21.07% 11.09 millions 17.8s

Our method 1-1 20.25% 1.85 millions 4.4s

4.2.3. Analyses of Our Method

We first study the effect of distilling from unlabeled source

words, as shown in Table 4. It can be seen that unlabeled source

words can boost the accuracy by nearly 1% WER, demonstrat-

ing the effectiveness by introducing abundant unlabeled data

into knowledge distillation. We also compare token-level

Table 4: Comparison of our method with and without unlabeled

source words.

Method PER WER

Without unlabeled data 4.78% 20.71%

With unlabeled data 4.60% 19.88%

distillation with sequence-level distillation, where the student

5They use a training/validation/test split different from [21] and
ours. Therefore, we reproduce their work with on our training/
validation/test split, based on their public codebase (https://github.
com/ctr4si/NSGD G2P), and get similar result as theirs.

models are directly trained on the top-1 beam search results of

the teacher network. As shown in Table 5, the result demon-

strate the advantage of token-level distillation. Furthermore,

Table 5: Comparison between token-level and sequence-level

distillation.

Method PER WER

Sequence-level 4.71% 20.32%

Token-level 4.60% 19.88%

we study the effect of ensemble teacher model in knowledge

distillation. As shown in Table 6, the ensemble teacher model

can boost the accuracy by more than 1% WER, compared with

the single teacher model (a Transformer model with 6-layer en-

coder and 6-layer decoder), which demonstrates the strong en-

semble teacher model is essential to guarantee the performance

of student model in knowledge distillation. At last, we compare

Table 6: Comparison of different teacher models for knowledge

distillation.

Method PER WER

Single teacher model 4.93% 21.05%

Ensemble teacher model 4.60% 19.88%

Transformer with RNN [21] and CNN [5] based models, with-

out using knowledge distillation and unlabeled data, as shown

in Table 7. We can see that Transformer model outperforms the

RNN and CNN based models used in previous works, demon-

strating the advantage of Transformer model.

Table 7: Comparison of Transformer, LSTM and CNN.

Method PER WER

Bi-LSTM + n-gram [21] 5.76% 24.88%

CNN with NSGD [5] 5.58% 24.10%

Transformer 4.96% 21.07%

4.2.4. Results on Our Internal Dataset

We compare our method with the previous state-of-the-art CNN

with NSGD [5] (which is reproduced by ourself) on our inter-

nal dataset, as shown in Table 8. Our method outperforms CNN

with NSGD by 3.52% WER, which demonstrates the effective-

ness of our method for G2P conversion.

Table 8: Results on our internal dataset.

Method PER WER

CNN with NSGD [5] 3.79% 22.39%

Our method 3.04% 18.87%

5. Conclusion

In this work, we have proposed the token-level ensemble distil-

lation with unlabeled source words for G2P conversion. Exper-

iments on the publicly available CMUDict 0.7b dataset and our

internal dataset demonstrate the effectiveness of our method on

both improving the accuracy of G2P conversion and reducing

the model size for online deployment. For future work, we will

leverage more unlabeled data and pre-training [33] to improve

the performance, and extend our work to other languages.



6. References

[1] Y. Ren, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Almost
unsupervised text to speech and automatic speech recognition,”
arXiv preprint arXiv:1905.06791, 2019.

[2] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech: Fast, robust and controllable text to speech,” arXiv

preprint arXiv:1905.09263, 2019.

[3] K. Yao and G. Zweig, “Sequence-to-sequence neural net
models for grapheme-to-phoneme conversion,” arXiv preprint

arXiv:1506.00196, 2015.

[4] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech communication, vol. 50, no. 5, pp.
434–451, 2008.

[5] M.-j. Chae, K. Park, L. Bang, S. Suh, L. Park, N. Kimt, and
L. Park, “Convolutional sequence to sequence model with non-
sequential greedy decoding for grapheme to phoneme conver-
sion,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 2486–
2490.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[7] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and
A. Anandkumar, “Born again neural networks,” arXiv preprint

arXiv:1805.04770, 2018.

[8] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,”
arXiv preprint arXiv:1606.07947, 2016.

[9] M. Freitag, Y. Al-Onaizan, and B. Sankaran, “Ensemble
distillation for neural machine translation,” arXiv preprint

arXiv:1702.01802, 2017.

[10] X. Tan, Y. Ren, D. He, T. Qin, and T.-Y. Liu, “Multilingual neural
machine translation with knowledge distillation,” in International

Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=S1gUsoR9YX

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, 2017, pp.
5998–6008.

[12] C. Gong, X. Tan, D. He, and T. Qin, “Sentence-wise smooth reg-
ularization for sequence to sequence learning,” in AAAI, 2018.

[13] S. Zhou, L. Dong, S. Xu, and B. Xu, “A comparison of mod-
eling units in sequence-to-sequence speech recognition with the
transformer on mandarin chinese,” in International Conference on

Neural Information Processing. Springer, 2018, pp. 210–220.

[14] S. F. Chen, “Conditional and joint models for grapheme-to-
phoneme conversion,” in Eighth European Conference on Speech

Communication and Technology, 2003.

[15] K. Wu, C. Allauzen, K. Hall, M. Riley, and B. Roark, “Encoding
linear models as weighted finite-state transducers,” in Fifteenth

Annual Conference of the International Speech Communication

Association, 2014.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint

arXiv:1409.0473, 2014.

[17] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of

the 2015 Conference on Empirical Methods in Natural Language

Processing, 2015, pp. 1412–1421.

[18] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[19] H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Feder-
mann, X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li et al.,
“Achieving human parity on automatic chinese to english news
translation,” arXiv preprint arXiv:1803.05567, 2018.

[20] S. Toshniwal and K. Livescu, “Jointly learning to align and
convert graphemes to phonemes with neural attention models,”
in 2016 IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2016, pp. 76–82.

[21] B. Milde, C. Schmidt, and J. Köhler, “Multitask sequence-to-
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